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Abstract Electron transfer (ET) between primary electron donor and acceptor is mod-
eled in the photosynthetic complexes. Our model includes (i) two discrete energy
levels associated with donor and acceptor, which are directly interacting and (ii) two
continuum manifolds of electron energy levels (“sinks”), each interacting with the
donor and acceptor. We also introduce external (classical) noise which acts on both
donor and acceptor. We derive a closed system of integro-differential equations which
describes the non-Markovian quantum dynamics of the ET. A region of parameters is
found in which the ET dynamics can be simplified, and described by coupled ordinary
differential equations. Using these simplified equations, both cases of sharp and flat
redox potentials are analyzed. We analytically and numerically obtain the character-
istic parameters that optimize the ET rates and efficiency in this system. In particular,
we demonstrate that even for flat redox potential a simultaneous influence of sink and
noise can significantly increase the efficiency of the ET. We discuss a relation between
our approach and the Marcus theory of ET.
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1 Introduction

In photosynthetic complexes of plants, eukaryotic algae and cyanobacteria, quanta
of light excite chlorophyll dipoles in the antennas of the light harvesting complexes
(LHCs). These local energy excitations are then transferred to the reaction centers
(RCs) of photosystem I (PSI) and photosystem II (PSII), where the charge separation
occurs. During charge separation an electron jumps from the donor to the acceptor and
both donor and acceptor become charged. These electron jumps continue through out
the whole chain of the redox potential. The characteristic time-scales of the electron
dynamics vary from a few picoseconds to milliseconds. The primary charge separation
occurs on a very short time-scale, of a few picoseconds [1–5]. Because this time-scale
is so short, even the room-temperature fluctuations of the protein environment do not
destroy the quantum coherent effects, which were recently discussed in LHCs and
RCs [5–12].

Generally, to describe the motion of an electron between the donor and acceptor,
different approaches can be used [5,7,13–23]. The leading approach is based on the
well-known Marcus theory, which takes into account both the strength of donor-
acceptor interaction, and the dynamics of the protein environment [15]. In this way,
the election transfer (ET) rate and the efficiency of the ET can be calculated. At the
same time, many efforts have been devoted to various modifications of the Markus
theory. One of them is related to taking into account the sinks which represent the
continuum electron energy reservoirs in the chemical and biological systems [13,14,
24] (see also references therein). These continuum manifolds are similar to those
described by the Weisskopf–Wigner model and its different modifications [25–27].
These sink reservoirs serve as additions to the thermal reservoirs in ET. The principal
difference between the protein (vibrational) and sink (electron) reservoirs is that the
former behave as the bosonic (electromagnetic) environments while the later provide
additional electron quasi-degenerate states [25,26]. These sinks increase the entropy
for an electron escaping into these reservoirs. As a result, the sinks modify the form
of the Gibbs equilibrium distribution. Indeed, even in the case of a flat redox potential
one can expect the acceptor to be populated with a high enough efficiency.

In this paper, we consider ET in a model which consists of two discrete energy
states, donor and acceptor. A matrix element of a direct donor-acceptor interaction is
included. The donor and acceptor interact directly with two independent sinks which
are represented by two quasi-degenerate (continuum) manifolds of the electron energy
levels. In addition, external (classical) noise interacts with both donor and acceptor.
By taking into account all these effects, we describe the ET dynamics in different
parameter regions. We obtain the conditions when the system of integro-differential
equations, which describes generally the non-Markovian electron dynamics, can be
reduced to much simpler system of ordinary differential equations. We obtain analyti-
cally and numerically the ET for both sharp and flat redox potentials, and for different
amplitudes of noise.
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The advantageous of our approach include (i) simultaneous consideration of the
standard donor-acceptor interaction, interactions with sinks, and with external noise
and (ii) a derivation of explicit analytical expressions which could be useful for the
analysis of the ET in these systems. Our approach is a rigorous one, so all approx-
imations are controlled and justified. Simultaneous contributions of sinks and noise
allowed us to derive optimal ET rates for various regions of parameters. In particular,
we demonstrate that even for flat redox potential, the efficiency of the population of
acceptor can be high enough. As was mentioned above, we substituted in our model
the thermodynamical (protein) environment by the external classical noise (see, for
example, [22,28–31]). We discuss a relation between our approach and the Marcus
theory of ET.

Our paper is organized as follows. In Sect. 2, we describe our simplified model with
a single sink interacting only with the acceptor level, and present an analytic solution
for the ET, in the absence of noise. In Sect. 3, we analyze analytically and numerically
the simultaneous influence of the single acceptor sink and noise. We derive a closed
system of integro-differential equations which describe the ET. We also find the region
of parameters for which a system of ordinary differential equations can be applied.
In Sect. 4, we analyze analytically and numerically the simultaneous influence of two
sinks and noise. In Sect. 5, we discuss the obtained results. In the Appendices some
useful formulae are presented.

2 Model description

Our model consists of two protein cofactors in the RC (donor and acceptor) each with
a discrete energy level. In this Section, we consider, for simplicity, only a single sink
which interacts with the acceptor level (the acceptor is embedded in a sink). The sink
can be considered either as an additional, third cofactor, or as a part of the acceptor
(see Fig. 1). The first site, denoted by |d〉, is the electron donor, with the energy level,
Ed . The second site, |a〉, is the electron acceptor, with energy level, Ea . We model
the sink by a large number of discrete and nearly degenerate energy levels, Na � 1
(Fig. 1). Then, the transition to the density of states (the continuum limit) is done for
the sink. Note that in some situations, the sinks can be considered as approximations
to HOMO and LUMO orbitals with finite electron densities of states.

The Hamiltonian of this system can be written as

Ht = Ed |d〉〈d| + Ea |a〉〈a| + V

2
(|d〉〈a| + |a〉〈d|)

+
N∑

i=1

Ei |i〉〈i | +
Na∑

i=1

(Vai |a〉〈i | + Via |i〉〈a|) , (1)

where Ei are energies of the sink levels, and Vda = V/2 (see Fig. 1).
Using the standard Feshbach projection method [26,32–35], one can show that the

dynamics of the donor-acceptor (intrinsic) states can be described by the following
Schrödinger equation with an effective non-Hermitian Hamiltonian, H̃ = H − iW
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Fig. 1 Schematic of our model consisting of donor and acceptor discrete energy levels, with the acceptor
coupled to a sink reservoir with a nearly continuous spectrum

(we set h̄ = 1)[36]:

i
∂ψ(t)

∂t
= H̃ ψ(t), (2)

where

H = εd |d〉〈d| + εa |a〉〈a| + V

2
(|d〉〈a| + |a〉〈d|) (3)

is the dressed donor-acceptor Hamiltonian, and W = (Γa/2)|a〉〈a|. HereΓa is the rate
describing the tunneling from the acceptor to the sink. (See Appendix A for details.)

Equivalently, the dynamics of this system can be described by the Liouville equa-
tion,

i ρ̇ = [H , ρ] − i{W , ρ}, (4)

where ρ is the density matrix projected on the intrinsic states, and {W , ρ} = W ρ +
ρW .

The solution of the eigenvalue problem for the effective non-Hermitian Hamil-
tonian, H̃ , yields two complex eigenvalues:

Ẽ1,2 = 1

2
(εd + εa − iΓ )± Ω

2
(5)

where Ω = √
V 2 + (εda + iΓ )2, Γ = Γa/2 and we denote εda = εd − εa . The

eigenvalues coalescence in the so-called exceptional point (EP) defined by the equa-
tion, Ω(V, εda, Γ ) = 0. Since Ω is a complex function of its parameters, we obtain
two real equations: �Ω = 0 and �Ω = 0. One can show that these equations are
equivalent to εda = 0 and V = Γ .

Note that, in contrast to the case of a Hermitian Hamiltonian, where the degeneracy
is referred to as a “conical intersection” (known also as a “diabolic point” [37]), the
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coalescence of eigenvalues results in different eigenvectors. At the EP, the eigenvectors
merge, forming a Jordan block. (See the review [38], and references therein.)

Choice of parameters. This model involves various parameters, whose values are
only partially known. Our choice of parameters is based on the data taken for the ET
through the active pathway in the quinone-type of the Photosystem II RC [39]. (Note
that the values of parameters in energy units can be obtained by multiplying our values
by h̄ ≈ 6.58 × 10−13meVs. For example, εda = 60 ps−1 ≈ 40meV.)

2.1 Tunneling to the sink

In this section we discuss the ET to the sink. (For details see [36].) We assume that
initially the electron occupies the upper level (donor), ρ11(0) = 1 and ρ22(0) = 0.
With these initial conditions, the solution of the Liouville equation (4) for the diagonal
component of the density matrix is:

ρ11(t) = e−Γ t
∣∣∣∣

(
cos

Ωt

2
− i cos θ sin

Ωt

2

)∣∣∣∣
2

, (6)

ρ22(t) = e−Γ t
∣∣∣∣sin θ sin

Ωt

2

∣∣∣∣
2

, (7)

where Ω = √
V 2 + (εda + iΓ )2 is the complex Rabi frequency, cos θ = (εda +

iΓ )/Ω , and sin θ = V/Ω .
Setting Ω = Ω1 + iΩ2 = √

p + iq , where p = V 2 + ε2
da − Γ 2 and q = 2εdaΓ ,

we obtain

Ω1 = ± 1√
2

√
p +

√
p2 + q2, (8)

Ω2 = ± 1√
2

√
−p +

√
p2 + q2. (9)

Using these results, we obtain for ρ22(t) the simple analytical expression:

ρ22(t) = V 2e−Γ t

2(Ω2
1 +Ω2

2 )
(coshΩ2t − cosΩ1t) . (10)

We define the ET efficiency of tunneling to the sink as

η(t) = 1 − Tr(ρ(t)) =
t∫

0

Tr{W , ρ(τ )}dτ. (11)
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This can be recast as the integrated probability of trapping the electron in the sink
[11,40],

η(t) = 2Γ

t∫

0

ρ22(τ )dτ. (12)

Inserting ρ22(t) into (12) and performing the integration, we find that the ET efficiency
is given by

η(t) = 1 − e−Γ t

Γ (Ω2
1 +Ω2

2 )

(
(Γ 2 +Ω2

1 )(Γ coshΩ2t +Ω2 sinhΩ2t)

−(Γ 2 −Ω2
2 )(Γ cosΩ1t −Ω1 sinΩ1t)

)
. (13)

In [36] it was shown that, for the sharp redox potential, the ET efficiency is rather
slow function of time. For instance, for εda = 60 ps−1 and 10 ps < V < 40 ps−1,
the ET efficiency approaches a value close to 1 for relatively large times, t � 150 ps.
However, the situation is changes drastically for the flat redox potential. For example,
for εda = 0, we obtain

Ω2 = 0, Ω2
1 = V 2 − Γ 2, V > Γ,

Ω1 = 0, Ω2 = 0, V = Γ

Ω1 = 0, Ω2
2 = Γ 2 − V 2, Γ > V .

(14)

Using these relations, we find that at the exceptional point the ET efficiency behaves
as

η(t) = 1 − e−Γ t . (15)

For V 	 Γ (V � Γ ) the asymptotic behavior of η(t) is

η(t) ∼
{

1 − e−Γ t , V � Γ,

1 − e−V 2t/2Γ , V 	 Γ.
(16)

Comparing the obtained results with (13), we conclude that the highest ET rate
is obtained for the flat redox potential at εda = 0, and V ≥ Γ . This result can be
interpreted by using a model of a single spin dynamics in an effective magnetic field.
The above parameters are defined so that the effective magnetic field is oriented in
the positive x-direction, and V corresponds to the Rabi frequency–the frequency of
rotation of the spin around the x-axis. Then, the above chosen conditions provide a
rapid transition from the donor to the acceptor, with subsequent tunneling from the
acceptor to the sink. The results of numerical simulations of the ET efficiency are
presented in Fig. 2. One can see that, when εda = 0 and V ≥ Γ , the ET efficiency
can approach a value close to 1 for short enough times, ∼ 2 ps.

123



2520 J Math Chem (2013) 51:2514–2541

Fig. 2 (Color online) Time
dependence (in ps) of the sites
population, ρ11(t) and ρ22(t),
(top) and ET efficiency (bottom)
(Γ = 5 ps−1). Solid and dashed
lines correspond to, ρ11(t) and
ρ22(t), respectively. Blue line:
V = 10 ps−1, εda = 0; red line
(EP):
V = Γ = 5 ps−1, εda = 0;
green line:
V = 10 ps−1, εda = 10 ps−1;
black line:
V = 5 ps−1, εda = 20 ps−1

3 Noise-assisted electron transfer to the sink

In the presence of classical noise, the quantum dynamics of the ET can be described
by the following effective non-Hermitian Hamiltonian (for details see Appendix A):

H̃ =
∑

n

εn|n〉〈n|+
∑

m,n

λmn(t)|m〉〈n|+ V

2

∑

m �=n

|m〉〈n|−i
Γ2

2
|2〉〈2|, m, n =1, 2,

(17)

where λmn(t) describes the noise. We denote by |1〉 and |2〉 the donor and accep-
tor states in the site representation, respectively. The diagonal matrix elements of
noise, λnn , are responsible for decoherence, and the off-diagonal matrix elements,
λmn (m �= n), lead to the relaxation processes. In what follows, we use a spin-fluctuator
model of noise, modeling the noise by an ensemble of fluctuators [41–43].

In the rest of this paper, we restrict ourselves to considering only the diagonal noise
effects, assuming that the noisy environment is the same for both the donor and the
acceptor sites (collective noise). Then, one can write λ1(t) = g1ξ(t) and λ2(t) =
g2ξ(t), where g1,2 are the interaction constants, and we assume, for concreteness, that
g1 ≤ g2. We consider a stationary noise described by a random variable, ξ(t), so that

ξ0 = 〈ξ(t)〉 = 〈ξ(0)〉, (18)
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χ(t − t ′) = 〈ξ(t)ξ(t ′)〉, (19)

where χ(t − t ′) is the correlation function.
The evolution of the average diagonal components of the density matrix is described

by the following system of integro-differential equations (see Appendix B):

d

dt
〈ρ11(t)〉 = −

t∫

0

K (t, t ′)
(〈
ρ11(t

′)
〉 − 〈

ρ22(t
′)
〉)

dt ′, (20)

d

dt
〈ρ22(t)〉 =

t∫

0

K (t, t ′)
(〈
ρ11(t

′)
〉 − 〈

ρ22(t
′)
〉)

dt ′ − 2Γ 〈ρ22(t)〉, (21)

where the average 〈 〉 is taken over the random process describing noise, and the kernel,
K (t, t ′), is given by

K (t, t ′) = e−Γ (t−t ′)
(〈

Ṽ21(t)Ṽ12(t
′)
〉
+

〈
Ṽ21(t

′)Ṽ12(t)
〉)
. (22)

We obtain the following expression for the kernel:

K (t−t ′)= V 2

2
cos

(
ε(t−t ′)

)
exp

⎛

⎜⎝−Γ (t − t ′)−D2

t−t ′∫

0

dτ ′
τ ′∫

0

dτ ′′χ(τ ′−τ ′′)

⎞

⎟⎠ ,

(23)

where D = |g1 − g2|, ε = εda − λ0, and we denote λ0 = Dξ0.
In our numerical simulations we use the correlation function of noise introduced in

[43],

χ(τ) = σ 2 A (E1(2γmτ)− E1(2γcτ)) , τ = |t − t ′|. (24)

Here En(z) denotes the Exponential integral [44], A = 1/ ln(γc/γm), σ
2 = χ(0) and

γm and γc (γm 	 γc) indicate the boundaries of the switching rates in the ensemble of
random fluctuators. The correlation function includes, besides the amplitude, σ , two
fitting parameters: γm and γc. Taking into account available theoretical and experi-
mental data [30,45,46], we have chosen for our numerical simulations the parameters
γm and γc as follows: 2γm = 10−4ps−1, 2γc = 1ps−1.

In Figs. 3 and 4 we present the results of numerical simulations for the tunneling
rate, Γ = 1 ps−1, and different parameters, V, ε, and the amplitude of noise, Dσ . As
one can see from Fig. 3, a low level of the noise does not improve the ET efficiency
rates. However, if the amplitude is sufficiently large, the noise significantly accelerates
the ET to the sink (Fig. 4).

In [36] we show that for a sharp redox potential, noise can greatly improve the rate
of ET to the sink. Our numerical results presented in Fig. 4, demonstrate that this is
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Fig. 3 (Color online) Time
dependence (ps) of the ET
efficiency (V = Γ =
1 ps−1, Dσ = 5 ps−1). Blue
line: ε = 0 (EP), red line:
ε = 20 ps−1, green line:
ε = 40 ps−1, black line:
ε = 60 ps−1

Fig. 4 (Color online) Time
dependence (in ps) of the ET
efficiency
(V = 10 ps−1, Γ = 1 ps−1 ).
Solid lines correspond to η(t) in
the presence of noise with the
amplitude Dσ = 40 ps−1. Blue
line: ε = 0, red line:
ε = 20 ps−1, green line:
ε = 40 ps−1, black line:
ε = 60 ps−1. Dashed lines
correspond to η(t), in the
absence of noise

Fig. 5 (Color online) Time
dependence (in ps) of the ET
efficiency at the EP in the
presence of noise
(ε = 0, V = Γ = 5 ps−1). Blue
line: Dσ = 0, red line:
Dσ = 20 ps−1, green line:
Dσ = 40 ps−1, black line:
Dσ = 60 ps−1

true for any redox potential, if the noise is strong enough. In Fig. 5 we present the
results of numerical simulations at the EP and in presence of noise for the tunneling
rate Γ = 5 ps−1 (ε = 0, V = Γ = 5 ps−1). As can be observed, at the exceptional
point (EP) the noise decreases the rate of the ET. The behavior of the system in the
vicinity of the EP is rather complicated, and the ET efficiency is sensitive to the choice
of parameters (Fig. 6). For instance, for the flat redox potential with ε = 0 and an
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Fig. 6 (Color online) Time
dependence (in ps) of the ET
efficiency in the vicinity of the
EP in the presence of noise (ε =
0, Dσ = 60 ps−1, Γ = 5 ps−1).
Blue line: V = 2.5 ps−1, red
line: V = 5 ps−1 (EP), green
line: V = 10 ps−1, black line:
V = 20 ps−1

amplitude of noise, Dσ = 60 ps−1, the ET efficiency approaches a value close to 1
for short enough time, ∼ 2 ps.

3.1 Electron transport approximated by differential equations

Under the conditions, presented below, the system of integro-differential Eqs. (20)
and (21), can be approximated by the following system of the ordinary differential
equations:

d

dt
〈ρ11(t)〉 = −R(t) (〈ρ11(t)〉 − 〈ρ22(t)〉) , (25)

d

dt
〈ρ22(t)〉 = R(t) (〈ρ11(t)〉 − 〈ρ22(t)〉)− 2Γ 〈ρ22(t)〉, (26)

d

dt
η(t) = 2Γ 〈ρ22(τ )〉, (27)

where R(t) = ∫ t
0 K (τ )dτ and η(t) = 2Γ

∫ t
0 〈ρ22(τ )〉dτ .

Now we obtain the conditions for which the exact system of integro-differential
Eqs. (20) and (21) can be approximated by Eqs. (25)–(27). In the first order of the
series expansion, we can write

〈ρ11(t
′)〉 ≈ 〈ρ11(t)〉 − d

dt
〈ρ11(t)〉(t − t ′), (28)

〈ρ22(t
′)〉 ≈ 〈ρ22(t)〉 − d

dt
〈ρ22(t)〉(t − t ′), (29)

where, in the same order, the derivatives on the r.h.s. are taken from Eqs. (25), (27).
Using these results, after some transformations we find that Eqs. (20) and (21)

become

d

dt
〈ρ11(t)〉 = −R(t) (〈ρ11(t)〉 − 〈ρ22(t)〉) (1 − R1(t))+ 2ΓR1(t)〈ρ22(t)〉, (30)
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d

dt
〈ρ22(t)〉 = R(t) (〈ρ11(t)〉 − 〈ρ22(t)〉) (1 − R1(t))− 2Γ 〈ρ22(t)〉(1 − R1(t)),

(31)
d

dt
η(t) = 2Γ 〈ρ22(τ )〉, (32)

where R1(t) = ∫ t
0 τK (τ )dτ . From here it follows that the system of integro-

differential Eqs. (20) and (21) can be approximated by the system of the first order ordi-
nary differential equations in the interval of time: 0 < t < ∞, if | ∫ ∞

0 τK (τ )dτ | 	 1.
Assuming that the correlation function, χ(t), is a rapidly decreasing function, as

t → ∞, we can approximate

exp

⎛

⎝−D2

t∫

0

dτ

τ∫

0

ds χ(τ − s)

⎞

⎠ ≈ exp

(
− (Dσ t)2

2

)
. (33)

Performing the integration with the kernel

K (τ ) = V 2

2
cos(ετ ) exp

(
−Γ τ − (Dσ)2

2
τ 2

)
, (34)

we obtain the following estimate:

∣∣∣∣∣∣

∞∫

0

K (τ )τdτ

∣∣∣∣∣∣
=

∣∣∣∣
V 2δ

2D2σ 2

∣∣∣∣ <
V 2|δ|max

2D2σ 2 	 1, (35)

where

δ = −1 +
√
πq

4p
exp

(
q2

4p2

)
erfc

(
q

2p

)
+

√
π q̄

4p
exp

(
q̄2

4p2

)
erfc

(
q̄

2p

)
. (36)

Here p = Dσ/
√

2, q = Γ + iε, q̄ = Γ − iε, and erfc(z) denotes the complementary
error function [44].

Using the properties of the erfc function, one can show that |δ| ≤ 1 for any choice
of parameters Γ, ε and the amplitude of noise, Dσ . (See Fig. 7.) Consequently, the
condition of validity of the approximation (25)–(27) can be written as V 	 Dσ . This
rough estimate can be improved greatly for the high level of noise, leading to V ≤ Dσ .

In Figs. 8 and 9 we present the results of the numerical simulations for ET efficiency,

η(t) = 2Γ

t∫

0

〈ρ22(τ )〉dτ. (37)
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Fig. 7 (Color online)
Dependence of δ on ε and
Dσ (Γ = 1 ps−1)

Fig. 8 (Color online) Time dependence (in ps) of the ET efficiency, η(t). The solutions of the system of
integro-differential equations are presented by solid lines (Γ = 1 ps−1). Dashed lines correspond to the
solutions of the approximate system of differential equations. Blue line: ε = 0, red line: ε = 20 ps−1,
green line: ε = 40 ps−1, black line: ε = 60 ps−1. Top: V = 30 ps−1, Dσ = 5 ps−1. Bottom: V =
10 ps−1, Dσ = 40 ps−1

As one can see, for V ≤ Dσ there is good agreement between the solutions obtained
from the system of integro-differential Eqs. (20) and (21) and the approximate system
of differential Eqs. (25)–(27).

The advantage of using differential equations instead of integro-differential equa-
tions is the ability to introduce effective rates. The computation of the asymptotic rate,
RΓ = limt→∞ R(t), yields [36]

RΓ = V 2
√

2π

8Dσ

(
exp

(
(Γ + iε)2

2D2σ 2

)
erfc

(
Γ + iε√

2Dσ

)

+ exp

(
(Γ − iε)2

2D2σ 2

)
erfc

(
Γ − iε√

2Dσ

) )
. (38)

As one can see from Fig. 10, for given values, V and ε, the rate, RΓ , reaches its
maximum value when the amplitude of noise equals the energy difference between
donor and acceptor, Dσ ≈ ε.
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Fig. 9 (Color online) Time dependence (in ps) of the ET efficiency. Solid lines correspond to η(t) obtained
from the system of integro-differential Eqs. (20)–(21) and dashed lines present the results for η(t) obtained
from the system of differential Eqs. (25)–(27). Blue line: ε = 0, red line: ε = 20 ps−1, green line:
ε = 40 ps−1, black line: ε = 60 ps−1 (Γ = 1 ps−1, V = Dσ = 40 ps−1). One can observe the excellent
agreement between the solutions

Fig. 10 (Color online) Left panel. The ET asymptotic rate, RΓ , vs. the amplitude of noise, Dσ (ε =
60 ps−1, V = 20 ps−1). Black dash-dot line (Γ = 5 ps−1), blue dashed line (Γ = 1 ps−1), red solid line
(Γ = 0). Right panel. Dependence of the asymptotic rate, RΓ , on ε and Dσ (V = 10 ps−1, Γ = 1 ps−1)

We compare now our results with the predictions of the Marcus theory, which gives
for the ET rate [15,19,20],

R = V 2

4

√
π

λkB T
exp

(
− (εda − λ)2

4λkB T

)
, (39)

where λ is the reorganization energy, and T is temperature. As in Marcus theory the
sink is absent, we insert Γ = 0 into Eq. (38). We obtain for our case,

R0 = V 2

4

√
2π

D2σ 2 exp

(
− (εda − λ0)

2

2D2σ 2

)
. (40)

The functional form of the rate (40) agrees with the ET rate followed from the Marcus
theory if one identifies: λ0 = λ and D2σ 2 = 2λkB T .
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Fig. 11 (Color online) Blue line
describes the time dependence
of the ET rate, R(t). Red line
corresponds to the asymptotic
rate, RΓ , given by Eq. (38).
From top to bottom:
ε = 0, 20, 40, 60 ps−1 (Γ =
1 ps−1, V = 10 ps−1 and
Dσ = 40 ps−1)

In Fig. 11, we compare the results of numerical calculations of the relaxation rate,
R(t) (blue line), with the asymptotic expression RΓ (red line) for different choices
of parameters. Inserting RΓ instead of R(t) into Eqs. (25) and (26), we obtain the
following system of the differential equations:

d

dt
〈ρ11(t)〉 = −RΓ (〈ρ11(t)〉 − 〈ρ22(t)〉) , (41)

d

dt
〈ρ22(t)〉 = RΓ (〈ρ11(t)〉 − 〈ρ22(t)〉)− 2Γ 〈ρ22(t)〉. (42)

The solution is given by

〈ρ11(t)〉 =
⎛

⎝1

2
− Γ

2
√

R2
Γ + Γ 2

⎞

⎠ e−R1t +
⎛

⎝1

2
+ Γ

2
√

R2
Γ + Γ 2

⎞

⎠ e−R2t , (43)

〈ρ22(t)〉 = RΓ

2
√

R2
Γ + Γ 2

(
e−R2t − e−R1t

)
, (44)

where R1,2 = RΓ + Γ ±
√

R2
Γ + Γ 2. The computation of the ET efficiency yields

[36]

η(t) = 1 − e− (R1+R2)t
2

(
cosh

(R1 − R2)t

2
+ R1 + R2

R1 − R2
sinh

(R1 − R2)t

2

)
. (45)

Its asymptotic behavior is

η(t) ≈ 1 − R1

R1 − R2
e−R2t . (46)

As one can see from Eq. (45), there are two ET rates, R1 and R2. However, the
asymptotic behavior of the ET efficiency is defined by the lowest ET rate, R2.

As shown in Fig. 11, the ET rate reaches its asymptotic value, R(t) → RΓ , quite
rapidly, at t ≈ 0.1 ps. This allows us to use the analytical solutions to describe tunneling

123



2528 J Math Chem (2013) 51:2514–2541

Fig. 12 (Color online) Time dependence (in ps) of the ET efficiency, η(t) (Γ = 1 ps−1, V =
10 ps−1, Dσ = 40 ps−1). Top. Left: analytical solution (dashed lines). Right: results of numerical simula-
tions (solid lines). Blue line: ε = 0, red line: ε = 20 ps−1, green line: ε = 40 ps−1, black line: ε = 60 ps−1.
Bottom. The both graphics are overlapping

to the sink with very high degree of accuracy. This conclusion is confirmed by our
numerical simulations presented in Fig. 12. One can observe the excellent agreement
between the ET efficiency given by formula (45) and the results obtained from Eqs.
(25)–(27).

4 Modified model with two sinks

In this Section, we generalize our model by including two sinks interacting indepen-
dently with the donor and acceptor. (See Fig. 13). The main reasons for this general-
ization are the following. When using a single sink which interacts with the acceptor,
the asymptotic of the ET efficiency, η(t), for large times approaches unity indepen-
dently of the parameters of the system and the tunneling rate, Γ . The additional sink,
which interacts with the donor, describes the leakage of the electron from the RC.
By manipulating the densities of the donor and acceptor states, or the tunneling rates,
Γ1 and Γ2, (see below), one can fit the asymptotic behavior of the ET efficiency, η2,
for the acceptor (0 ≤ η2 ≤ 1) with its experimental value. This approach is used for
modeling the dynamics of the ET in photosynthetic complexes. (See, for example,
[13,14], and references therein.)
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Fig. 13 Schematic of our modified model consisting of donor and acceptor discrete energy levels, with the
donor and acceptor coupled to independent sink reservoirs with nearly continuous spectrum

The Hamiltonian of the system can be written as

Ht = Ed |d〉〈d| + Ea |a〉〈a| + V

2
(|d〉〈a| + |a〉〈d|)

+
Nd∑

i=1

(Ei |i〉〈i | + Vdi |d〉〈i | + Vid |i〉〈d|)

+
Na∑

j=1

(
E j | j〉〈 j | + Vaj |a〉〈 j | + Vja | j〉〈a|) , (47)

where Ei (E j ) are energy levels of the sinks coupled with the donor (acceptor), and
Vda = V/2.

After the transition to the continuum spectra of the sinks, the system is governed
by the effective non-Hermitian Hamiltonian can, H̃ = H − iW , where

H = ε1|1〉〈1| + ε2|2〉〈2| + V

2
(|1〉〈2| + |2〉〈1|), (48)

where H is the dressed donor-acceptor Hamiltonian and

W = 1

2
(Γ1|1〉〈1| + Γ2|2〉〈2|). (49)

Passing from Eq. (47) to Eqs. (48)–(49) we have changed |d〉 → |1〉 and |a〉 → |2〉.
(See Appendix A.)

The dynamics of the system is described by the Liouville equation,

i ρ̇ = [H , ρ] − i{W , ρ}, (50)

Further, we assume that initially the electron occupies the upper level (donor),ρ11(0) =
1 and ρ22(0) = 0. With these initial conditions, the solution of the Eq. (50) for the
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diagonal component of the density matrix is given by

ρ11(t) = e−Γ t
∣∣∣∣

(
cos

Ωt

2
− i cos θ sin

Ωt

2

)∣∣∣∣
2

, (51)

ρ22(t) = e−Γ t
∣∣∣∣sin θ sin

Ωt

2

∣∣∣∣
2

, (52)

where Γ = (Γ1 +Γ2)/2,Ω = √
V 2 + (ε + iΔ)2 being the complex Rabi frequency,

Δ = (Γ2 − Γ1)/2, cos θ = (ε + iΔ)/Ω , and sin θ = V/Ω .
Setting Ω = Ω1 + iΩ2, we obtain for ρ22(t) the simple analytical expression:

ρ22(t) = V 2e−Γ t

2(Ω2
1 +Ω2

2 )
(coshΩ2t − cosΩ1t) . (53)

We define the ET efficiency of trapping the electron in the acceptor’s sink as

η2(t) = Γ2

t∫

0

ρ22(τ )dτ. (54)

Inserting ρ22(t) into (54) and performing the integration, we obtain

η2(t) = Γ2

Γ1 + Γ2

(
1 − e−Γ t

Γ (Ω2
1 +Ω2

2 )

(
(Γ 2 +Ω2

1 )(Γ coshΩ2t +Ω2 sinhΩ2t)

− (Γ 2 −Ω2
2 )(Γ cosΩ1t −Ω1 sinΩ1t)

))
. (55)

From here it follows η2(t) → η0, as t → ∞, where

η0 = Γ2

Γ1 + Γ2
. (56)

4.1 Noise-assisted electron transfer

In the presence of classical diagonal noise, described by λn = gnξ(t), the effective
non-Hermitian Hamiltonian can be written as

H̃ =
∑

n

(
εn + gnξ(t)− i

Γn

2

)
|n〉〈n| + V

2

∑

m �=n

|m〉〈n|. (57)
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We describe the evolution of the system by the following differential equations:

d

dt
〈ρ11〉 = −RΓ (〈ρ11〉 − 〈ρ22〉)− Γ1〈ρ11〉, (58)

d

dt
〈ρ22〉 = RΓ (〈ρ11〉 − 〈ρ22〉)− Γ2〈ρ22〉, (59)

where RΓ = limt→∞ R(t) is given by

RΓ = V 2
√

2π

8Dσ

(
exp

(
(Γ + iε)2

2D2σ 2

)
erfc

(
Γ + iε√

2Dσ

)

+ exp

(
(Γ − iε)2

2D2σ 2

)
erfc

(
Γ − iε√

2Dσ

) )
. (60)

The motivation to use this simplified description is as follows. As was shown in
Sec. III, approximation of integro-differential equations by the system of differential
equations is valid for v ≤ Dσ . In addition, since the ET rate reaches its asymptotic
value, R(t) → RΓ , quite rapidly, at t ≈ 0.1 ps, we can use the asymptotic rates, RΓ ,
instead of R(t). This allows us to use the analytical solutions to describe tunneling to
the sinks with very high degree of accuracy.

The solution of Eqs. (58)–(59), with the initial conditions, 〈ρ11(0)〉 = 1 and
〈ρ22(0)〉 = 0, is

〈ρ11(t)〉 =
⎛

⎝1

2
− Δ

2
√

R2
Γ +Δ2

⎞

⎠ e−R1t +
⎛

⎝1

2
+ Δ

2
√

R2
Γ +Δ2

⎞

⎠ e−R2t , (61)

〈ρ22(t)〉 = RΓ

2
√

R2
Γ +Δ2

(
e−R2t − e−R1t

)
, (62)

where R1,2 = RΓ + Γ ±
√

R2
Γ +Δ2 and Δ = (Γ2 − Γ1)/2.

The computation of the ET efficiency of tunneling in the acceptor’s sink yields

η2(t) = Γ2RΓ

R1R2

(
1 − e− (R1+R2)t

2

(
cosh

(R1 − R2)t

2

+R1 + R2

R1 − R2
sinh

(R1 − R2)t

2

) )
.

(63)

From here it follows, as t → ∞,

η2(t) → ηr = Γ2RΓ

R1R2
. (64)
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Fig. 14 (Color online) Time dependence (in ps) of the ET efficiency, η2(t) (Γ1 = 1 ps−1, Γ2 = 5 ps−1).
Blue line: ε = 0, red line: ε = 20 ps−1, green line: ε = 40 ps−1, black line: ε = 60 ps−1. Left: V =
40 ps−1, Dσ = 40 ps−1. Right: V = 10 ps−1, Dσ = 40 ps−1

Comparing the obtained results with the ET efficiency without noise, η0 = Γ2/(Γ1 +
Γ2), (see Eq. (56)), we obtain

ηr = η0
2ΓRΓ

2ΓRΓ + Γ 2 −Δ2 . (65)

This can be represented in the form

ηr = η0
(Γ1 + Γ2)RΓ

(Γ1 + Γ2)RΓ + Γ1Γ2
. (66)

From here it follows, that when RΓ � Γ1Γ2/(Γ1 + Γ2) the ET efficiency ηr ≈ η0.
Generally, the ET efficiency with the presence of noise cannot exceed the ET efficiency
without noise, ηr ≤ η0.

In Fig. 14, we present the results of numerical simulations of the ET efficiency
when two sinks are taken into account. As one can see from Eq. (65), the asymptotic
value for the ET efficiency, for chosen values of Γ1,2, must satisfy the condition,
ηrc ≤ η0 ≈ 83.3 %. As one can see, the asymptotic value of ηrc is close enough to η0,
for chosen in Fig. 14 (left), parameters corresponding to black line. We also would like
to mention that, as the results presented in Fig. 14 (left) demonstrate, the saturation of
η2(t) happens fast enough, at t ≈ 2 ps.

5 Conclusion and discussions

In this paper, we analyzed analytically and numerically the simplest model of the
electron transfer (ET) between two protein sites, donor and acceptor, in the presence
of classical (external) noise that is characterized by its amplitude and its correlation
time. The noise is described by the well-known model of two-level fluctuators. We also
included in our model two sinks which are represented by quasi-degenerate manifolds
of electron energy levels. The sinks are directly coupled to the donor and acceptor
states. This is done using the well-known Weisskopf–Wigner model [25–27].
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When both noise and sinks influence the ET, the electron dynamics becomes rather
complicated, and is generally described by a system of integro-differential equations.
We derive the conditions for which a simplified system of ordinary differential equa-
tions can be used.

Our approach is rigorous in the sense that all approximations are controlled and
justified. We obtain analytically and numerically the optimal ET rates and efficiency
for both sharp and flat redox potential. In particular, we show that even for flat redox
potential a sink associated with the acceptor can provide high enough efficiency of
population the acceptor, which bosonic environment (or noise) can not do. Experi-
mental verification of this result will represent a significant interest. We compare our
approach for the ET rates with the results followed from the Marcus theory.

Our results can be used for analyzing and engineering optimal properties of photo-
synthetic bio-complexes.
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Appendix A: Non-Hermitian effective Hamiltonian

We consider the time-dependent Hamiltonian of a N -level system coupled with inde-
pendent sinks through each level:

H (t) =
N∑

n=1

εn(t)|n〉〈n| +
∑

m �=n

βnm(t)|n〉〈m|

+
N∑

n=1

Nn∑

in=1

(
Ein |in〉〈in| + Vnin |n〉〈in| + Vinn|in〉〈n|) , (67)

where m, n = 1, 2, . . . , N . We assume that the sinks are sufficiently dense, so that
one can perform an integration instead of a summation. Then we have,

H (t) =
∑

n

εn(t)|n〉〈n| +
∑

m �=n

βmn(t)|n〉〈m|

+
∑

n

(∫
αn(E)|n〉〈E |gn(E)d E + h.c.

)
+

∑

n

∫
E |E〉〈E |gn(E)d E

(68)

where gn(E) is the density of states, and Vnin → αn(E).
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With the state vector written as

|ψ〉 =
∑

n

(
cn(t)|n〉 +

∫
cnE (t)|E〉gn(E)d E

)
, (69)

the Schrödinger equation,

i
∂|ψ(t)〉
∂t

= H |ψ(t)〉, (70)

takes the form

i ċn(t) = E(t)cn(t)+
∑

m �=n

βnm(t)cm(t)+
∞∫

0

α∗
n(E)cnE (t)gn(E)d E (71)

i ċnE (t) = EcE (t)+ αn(E)cn(t). (72)

In order to eliminate the continuum amplitudes from the equations for the discrete
states, we first apply the Laplace transformation:

cn(t) =
∞∫

0

e−st cn(s)ds, (73)

cnE (t) =
∞∫

0

e−st cnE (s)ds. (74)

Then, from Eq. (72) we obtain

(s + i E)cnE (s) = −iαn(E)cn(s). (75)

This yields cE (s) = −iαn(E)c2(s)/(s + i E). Inserting this expression for cE (s) into
Eq. (71), we obtain the following system of integro-differential equations, describing
the non-Markovian dynamics of the TLS,

i ċn(t) = Ecn(t)+
∑

n �=m

βnm(t)cm(t)− i

∞∫

0

cn(s)e
−st ds

∫ |αn(E)|2gn(E) d En

s + i E
.

(76)

To proceed further, we change the variable in the last integral, s → −E ′, so that

∫ |αn(E)|2gn(E) d E

s + i E
→ −i

∫ |αn(E)|2gn(E) d En

E − E ′ (77)
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The next step is to use the identity

1

x − x ′ + i0
= P

{
1

x − x ′

}
− iπδ(x − x ′), (78)

where P = Principal value. This yields

∫ |αn(E)|2gn(E) d E

E − E ′ = Δ(E ′)− i

2
Γn(E

′), (79)

where

Δ(E ′) = P

∫ |αn(E)|2gn(E) d E

E − E ′ , (80)

Γn(E
′) = 2π

∫
|αn(E)|2gn(E)δ(E − E ′) d E . (81)

Now using the Weisskopf–Wigner pole approximation, we evaluate the integrals as
follows [25,26,47]:

Δ(E ′) ≈ Δ(εn) = P

∫ |αn(E)|2gn(E)d E

E − εn
, (82)

Γn(E
′) ≈ Γn(εn) = 2π

∫
|αn(E)|2gn(E)δ(E − εn) d E = 2πgn(εn)|αn(εn)|2.

(83)

The Weisskopf–Wigner pole approximation basically corresponds to the assumption
that the coupling constant to the continuum is a smoothly varying function of the
energy, e.g. the continuum is treated as a single discrete level.

Inserting (82) into Eq. (71), we obtain

i ċn(t) = εn(t)cn(t)+
∑

m �=n

βnm(t)cm(t)− iΓn

2
cn(t), (84)

where Γn = Γn(En) and ε(t) = εn(t)−Δ(En).
Writing |ψN 〉 = ∑

n cn(t)|n〉, we find that the dynamics of the N -level system
interacting with the continuum is described by the Schrödinger equation,

i
∂|ψN (t)〉
∂t

= H̃ |ψN (t)〉, (85)

where H̃ = H − iW is the effective non-Hermitian Hamiltonian,

H =
∑

n

εn|n〉〈n| +
∑

m �=n

βmn(t)|m〉〈n| (86)
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being the dressed Hamiltonian, and

W = 1

2

∑

n

Γn|n〉〈n|. (87)

Equivalently, the dynamics of this system can be described by the Liouville equa-
tion,

i ρ̇ = H̃ ρ − ρH̃ † = [H , ρ] − i{W , ρ}, (88)

where ρ is the density matrix projected on the intrinsic states, and {W , ρ} = W ρ +
ρW .

In particular case of the two-level system considered in this paper, the effective
non-Hermitian Hamiltonian takes the form

H̃ = 1

2

(
2ε1 − iΓ1 V

V 2ε2 − iΓ2

)
. (89)

Comments. The results of this section can be obtained using the standard Feshbach
projection method [26,32–35].

Appendix B: Equation of motion for the average density matrix

In this Appendix, we derive from the Liouville equation, i ρ̇ = [H̃ , ρ] − i{W , ρ},
the equation of motion for the average density matrix. We will use the interaction
representation. Considering the off-diagonal elements as perturbations, so that H̃ =
H0 + V (t)− iW , where

H0 =
∑

n

εn|n〉〈n| +
∑

n

λnn(t)|n〉〈n|, (90)

V (t) =
∑

m �=n

(Vmn + λmn(t))|m〉〈n|, (91)

W = Γ1

2
|1〉〈1| + Γ2

2
|2〉〈2|, (92)

we obtain the following equations of motion:

˙̃ρ11 = i(ρ̃12Ṽ21 − Ṽ12ρ̃21)− Γ1ρ̃11, (93)
˙̃ρ22 = i(ρ̃21Ṽ12 − Ṽ21ρ̃12)− Γ2ρ̃22, (94)
˙̃ρ12 = i Ṽ12(ρ̃11 − ρ̃22)− Γ ρ̃12, (95)
˙̃ρ21 = i Ṽ21(ρ̃11 − ρ̃22)− Γ ρ̃21, (96)
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where Γ = (Γ1 + Γ2)/2,

ρ̃ = T

⎛

⎝e
i

t∫

0
H0(τ )dτ

⎞

⎠ ρT

⎛

⎝e
−i

t∫

0
H0(τ )dτ

⎞

⎠ , (97)

and

Ṽ = T

⎛

⎝e
i

t∫

0
H0(τ )dτ

⎞

⎠ V T

⎛

⎝e
−i

t∫

0
H0(τ )dτ

⎞

⎠ . (98)

Using Eqs. (93)–(96), we obtain

ρ̃11(t) = ρ̃11(0)+ i

t∫

0

e−Γ1(t−t ′)(ρ̃12(t
′)Ṽ21(t

′)− Ṽ12(t
′)ρ̃21(t

′))dt ′, (99)

ρ̃22(t) = ρ̃22(0)+ i

t∫

0

e−Γ2(t−t ′)(ρ̃21(t
′)Ṽ12(t

′)− Ṽ21(t
′)ρ̃12(t

′))dt ′, (100)

ρ̃12(t) = ρ̃12(0)+ i

t∫

0

e−Γ (t−t ′)Ṽ12(t
′)(ρ̃11(t

′)− ρ̃22(t
′))dt ′, (101)

ρ̃21(t) = ρ̃21(0)+ i

t∫

0

e−Γ (t−t ′)Ṽ21(t
′)(ρ̃11(t

′)− ρ̃22(t
′))dt ′. (102)

We assume that initially ρ̃12(0) = ρ̃21(0) = 0. Now, inserting (99)–(102) into
Eqs. (93)–(96), and taking into account that ρ̃11 = ρ11 and ρ̃22 = ρ22, we obtain the
following system of integro-differential equations,

ρ̇11(t) = −
t∫

0

e−Γ (t−t ′)
(

Ṽ21(t)Ṽ12(t
′)+ Ṽ21(t

′)Ṽ12(t)
) (
ρ11(t

′)− ρ22(t
′)
)

dt ′

−Γ1ρ11(t), (103)

ρ̇22(t) =
t∫

0

e−Γ (t−t ′)
(

Ṽ21(t)Ṽ12(t
′)+ Ṽ21(t

′)Ṽ12(t)
) (
ρ11(t

′)− ρ22(t
′)
)

dt ′

−Γ2ρ22(t), (104)

˙̃ρ12(t) = −
t∫

0

(
e−Γ1(t−t ′) + e−Γ2(t−t ′)

) (
Ṽ21(t

′)ρ̃12(t
′)− Ṽ12(t

′)ρ̃21(t
′)
)

Ṽ12(t)dt ′

−Γρ12(t)+ i Ṽ12(t)(ρ11(0)− ρ22(0)), (105)
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˙̃ρ21(t) = −
t∫

0

(
e−Γ1(t−t ′) + e−Γ2(t−t ′)

) (
Ṽ21(t

′)ρ̃12(t
′)− Ṽ12(t

′)ρ̃21(t
′)
)

Ṽ21(t)dt ′

−Γρ21(t)+ i Ṽ21(t)(ρ11(0)− ρ22(0)). (106)

For the average components of the density matrix this yields

d

dt
〈ρ11(t)〉 = −

t∫

0

e−Γ (t−t ′)
〈 (

Ṽ21(t)Ṽ12(t
′)+ Ṽ21(t

′)Ṽ12(t)
)

× (
ρ11(t

′)− ρ22(t
′)
) 〉

dt ′ − Γ1〈ρ11(t)〉, (107)

d

dt
〈ρ22(t)〉 =

t∫

0

e−Γ (t−t ′)
〈 (

Ṽ21(t)Ṽ12(t
′)+ Ṽ21(t

′)Ṽ12(t)
) (
ρ11(t

′)− ρ22(t
′)
) 〉

dt ′

−Γ2〈ρ22(t)〉, (108)

d

dt
〈ρ12(t)〉 = −

t∫

0

(
e−Γ1(t−t ′) + e−Γ2(t−t ′)

)

×
〈 (

Ṽ21(t
′)ρ̃12(t

′)− Ṽ12(t
′)ρ̃21(t

′)
)

Ṽ12(t)
〉
dt ′ − Γ 〈ρ12(t)〉

+i〈Ṽ12(t)〉(ρ11(0)− ρ22(0)), (109)

d

dt
〈ρ21(t)〉 = −

t∫

0

+
(

e−Γ1(t−t ′) + e−Γ2(t−t ′)
)

×
〈 (

Ṽ21(t
′)ρ̃12(t

′)− Ṽ12(t
′)ρ̃21(t

′)
)

Ṽ21(t)
〉
dt ′ − Γ 〈ρ21(t)〉

+i〈Ṽ21(t)〉(ρ11(0)− ρ22(0)), (110)

where the average 〈 〉 is taken over the random process describing noise.
In the spin-fluctuator model of noise with the number of fluctuators, N � 1, one

has the following relations for the splitting of correlations [43],

〈(
Ṽ21(t)Ṽ12(t

′)+ Ṽ21(t
′)Ṽ12(t)

) (
ρ̃11(t

′)− ρ̃22(t
′)
)〉

=
(〈

Ṽ21(t)Ṽ12(t
′)
〉
+

〈
Ṽ21(t

′)Ṽ12(t)
〉) (〈

ρ̃11(t
′)
〉 − 〈

ρ̃22(t
′)
〉)
, (111)

and so on. Employing (111), we obtain the following system of integro-differential
equations for the average components of the density matrix,
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d

dt
〈ρ11(t)〉 = −

t∫

0

e−Γ (t−t ′)(〈Ṽ21(t)Ṽ12(t
′)
〉

+〈
Ṽ21(t

′)Ṽ12(t)
〉)(〈
ρ11(t

′)
〉 − 〈

ρ22(t
′)
〉)

dt ′ − Γ1〈ρ11(t)〉, (112)

d

dt
〈ρ22(t)〉 =

t∫

0

e−Γ (t−t ′)(〈Ṽ21(t)Ṽ12(t
′)
〉

+〈
Ṽ21(t

′)Ṽ12(t)
〉)(〈
ρ11(t

′)
〉 − 〈

ρ22(t
′)
〉)

dt ′ − Γ2〈ρ22(t)〉, (113)

d

dt
〈ρ̃12(t)〉 = i〈Ṽ12(t)〉(ρ11(0)− ρ22(0))

−
t∫

0

(
e−Γ1(t−t ′) + e−Γ2(t−t ′)

)
〈Ṽ12(t)Ṽ21(t

′)〉〈ρ̃12(t
′)〉dt ′

+
t∫

0

(
e−Γ1(t−t ′) + e−Γ2(t−t ′)

)
〈Ṽ12(t)Ṽ12(t

′)〉〈ρ̃21(t
′)〉dt ′ − Γ 〈ρ̃12(t)〉,

(114)
d

dt
〈ρ̃21(t)〉 = i〈Ṽ21(t)〉(ρ11(0)− ρ22(0))

−
t∫

0

(
e−Γ1(t−t ′) + e−Γ2(t−t ′)

)
〈Ṽ21(t)Ṽ21(t

′)〉〈ρ̃12(t
′)〉dt ′

+
t∫

0

(
e−Γ1(t−t ′) + e−Γ2(t−t ′)

)
〈Ṽ21(t)Ṽ12(t

′)〉〈ρ̃21(t
′)〉dt ′ − Γ 〈ρ̃21(t)〉.

(115)

Using these relations, we obtain the following system of integro-differential equa-
tions for the diagonal components of the density matrix,

d

dt
〈ρ11(t)〉 = −

t∫

0

K (t, t ′)
(〈
ρ11(t

′)
〉 − 〈

ρ22(t
′)
〉)

dt ′ − Γ1〈ρ11(t)〉, (116)

d

dt
〈ρ22(t)〉 =

t∫

0

K (t, t ′)
(〈
ρ11(t

′)
〉 − 〈

ρ22(t
′)
〉)

dt ′ − Γ2〈ρ22(t)〉, (117)

where the kernel is given by

K (t, t ′) = e−Γ (t−t ′)
(〈

Ṽ21(t)Ṽ12(t
′)
〉
+

〈
Ṽ21(t

′)Ṽ12(t)
〉)
. (118)
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For the diagonal noise, so that λmn = 0 (m �= n), the kernel can be recast as

K (t − t ′) = |V12|2e−Γ (t−t ′)
(

eiε12(t−t ′)
〈
e−iκ(t−t ′)

〉
+ e−iε12(t−t ′)

〈
eiκ(t−t ′)

〉)
, (119)

where ε12 = ε1 − ε2, κ(t − t ′) = D
∫ t−t ′

0 ξ(τ )dτ and D = |g1 − g2|.
Applying the cumulant expansion, the generating functional can be recast in terms

of the line shape function and correlation function

〈
eiκ(t−t ′)

〉
= eiλ0(t−t ′)−〈κ2(t−t ′)〉/2, (120)

where λ0 = D〈ξ(0)〉 and

〈κ2(t − t ′)〉 = 2D2

t−t ′∫

0

dτ ′
τ ′∫

0

dτ ′′χ(τ ′ − τ ′′). (121)

Employing Eqs. (120)–(121), we obtain

K (t−t ′) = V 2

2
cos(ε(t − t ′)) exp

⎛

⎜⎝−Γ (t − t ′)− D2

t−t ′∫

0

dτ ′
τ ′∫

0

dτ ′′χ(τ ′−τ ′′)

⎞

⎟⎠ ,

(122)

where ε = ε12 − λ0.
Using the results obtained in Sec. III, one can show that for V < Dσ the system

of integro-differential Eqs. (116)–(117) can be approximated by the following system
of ordinary differential equations:

d

dt
〈ρ11〉 = −R(t) (〈ρ11〉 − 〈ρ22〉)− Γ1〈ρ11〉, (123)

d

dt
〈ρ22〉 = R(t) (〈ρ11〉 − 〈ρ22〉)− Γ2〈ρ22〉, (124)

where R(t) = ∫ t
0 τK (τ )dτ . Performing the integration we obtain

R(t) =
√
πq

4p
exp

(
q2

4p2

) (
erf

(
q

2p
+ pt

)
− erf

(
q

2p

))

+
√
π q̄

4p
exp

(
q̄2

4p2

)(
erf

(
q̄

2p
+ pt

)
− erf

(
q̄

2p

))
, (125)

where p = Dσ/
√

2, q = Γ + iε, q̄ = Γ − iε, and erf(z) is the error function [44].
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